Research
My current research interests are in pure and applied mathematics.
Research interests
Analysis and Applications | asymptotic analysis, special functions, singular perturbations |
---|---|
Partial Differential Equations | subelliptic operators, subRiemannian geometries, applications in several complex variables, degenerate and singular parabolic equations |
Scientific Computing and Numerical Analysis | numerical eigenvalue problems, fractional diffusion equations, imaging sciences |
Quantitative and Computational Finance | option pricing models, fast algorithms, big data and machine learning in finance |
Publications
The research papers are mainly in four areas:
Analysis and Applications
- [A12] Wen-Gao Long, Yu-Tian Li*, and Qing-hai Wang, Connection problem of the first Painlevé transcendents transcendent between poles and negative infinity, SIAM Journal on Mathematical Analysis, 55 (2023), 6676-6706. doi: 10.1137/21M1465251
- [A11] Wen-Gao Long and Yu-Tian Li*, Connection problem of the first Painlevé transcendents with large initial data, Journal of Physics A: Mathematical and General, 56 (2023), article id: 175201, 20pages. doi: 10.1088/1751-8121/acc620
- [A10] Yu-Tian Li, Xiang-Sheng Wang*, and Roderick Wong. Asymptotics of the Wilson polynomials, Analysis and Applications, 18 (2020), 237-270. doi: 10.1142/S0219530519500076
- [A9] Wen-Gao Long, Dan Dai, Yu-Tian Li*, and Xiang-Sheng Wang. Asymptotics of orthogonal polynomials with asymptotic Freud-like weights, Studies in Applied Mathematics, 144 (2020), 133-163. doi: 10.1111/sapm.12291
- [A8] Li-Hua Cao, Yu-Tian Li*, and Yu Lin. Asymptotic approximations of the continuous Hahn polynomials, Journal of Approximation Theory, 247 (2019), 32-47. doi: 10.1016/j.jat.2019.07.001
- [A7] A.D. Alhaidari* and Y. Li: Quantum systems associated with the Hahn and continuous Hahn polynomials, Reports on Mathematical Physics, 82 (2018), 285-301. doi: 10.1016/S0034-4877(19)30002-3
- [A6] W.-G. Long, Y.-T. Li, S.-Y. Liu, and Y.-Q. Zhao*: Real solutions of the first Painlevé equation with large initial data, Studies in Applied Mathematics 139 (2017), 505-532. doi: 10.1111/sapm.12171
- [A5] Y. Li, S. Liu, S. Xu, and Y. Zhao*: Asymptotics of Landau constants with optimal error bounds, Constructive Approximation 40 (2014), 281-305. doi: 10.1007/s00365-014-9259-x
- [A4] L.-H. Cao and Y.-T. Li*: Linear difference equations with a transition point at the origin, Analysis and Applications 12 (2014), 75-106. doi: 10.1142/S0219530513500371
- [A3] Y. T. Li* and R. Wong: Global asymptotics for Stieltjes–Wigert polynomials, Analysis and Applications 11 (2013), 1350028, 12 pages. doi: 10.1142/S0219530513500280
- [A2] Y. Li, S. Liu, S. Xu, and Y. Zhao*: Full asymptotic expansions of the Landau constants via a difference equation approach, Applied Mathematics and Computation 219 (2012), 988-995. doi: 10.1016/j.amc.2012.07.003
- [A1] Y. T. Li and R. Wong*: Integral and series representations of the Dirac delta function, Communications on Pure and Applied Analysis 7 (2008), 229-247. doi: 10.3934/cpaa.2008.7.229 This becomes a section in NIST Handbook of Mathematical Functions.
Partial Differential Equations
- [P11] Yingshu Zhang and Yutian Li*: Dynamics of a Leslie-Gower predator-prey model with advection and free boundaries Discrete and Continuous Dynamical Systems, series B 29 (2024), 319-350. doi: 10.3934/dcdsb.2023097
- [P10] Shanming Ji, Jingxue Yin*, and Yutian Li: Positive periodic solutions of the weighted $p$-Laplacian with nonlinear sources, Discrete and Continuous Dynamical Systems, series A 38 (2018), 2411-2439. doi: 10.3934/dcds.2018100
- [P9] P. Greiner* and Y. Li: A fundamental solution of a nonelliptic operator, II, Analysis and Applications 16 (2018), 407-433. doi: 10.1142/S0219530516500196
- [P8] S. Ji, Y. Li, R. Huang*, and J. Yin: Singular periodic solutions for the $p$-Laplacian in a punctured domain, Communications on Pure and Applied Analysis 16 (2017), 373-392. doi: 10.1934/cpaa.2017019
- [P7] P. Greiner* and Y. Li: Heat kernels, old and new, Bulletin of the Institute of Mathematics Academia Sinica, New Series 12 (2017), 1-37. doi: 10.21915/BIMAS.2017101
- [P6] D.-C. Chang and Y. Li*: Small time asymptotics of the heat kernels for the Heisenberg subLaplacian and step two Grushin operator, Proceedings of the Royal Society A 471 (2015), 20140943. 19 pages. doi: 10.1098/rspa.2014.0943
- [P5] D.-C. Chang* and Y. Li: Heat kernels for a family of Grushin operators, Method. Anal. Appl. 21 (2014), 291-312. doi: 10.4310/MAA.2014.v21.n3.a2
- [P4] O. Calin, D.C. Chang*, and Y. Li: On the heat kernel of a left invariant elliptic operator, in: Excursions in Harmonic Analysis Vol. 2, 197-209, edited by T. D. Andrews et al., Birkhauser/Springer, New York, 2013. doi: 10.1007/978-0-8176-8379-5_10
- [P3] O. Calin, D.C. Chang*, J. Hu, and Y. Li: Heat kernels of a class of degenerate elliptic operators using stochastic method, Complex Variables and Elliptic Equations 57 (2012), 155-168. doi: 10.1080/17476933.2011.581756
- [P2] O. Calin, D.C. Chang*, J. Hu, and Y. Li: On heat kernels of a class of degenerate elliptic operators, Journal of Nonlinear and Convex Analysis 12 (2011), 309-340.
- [P1] D.C. Chang* and Y. Li: SubRiemannian geodesics in Grushin plane, Journal of Geometric Analysis 22 (2012), 800-826. doi: 10.1007/s12220-011-9215-y
Scientific Computing
- [S6] Liyuan Chen, Yutian Li, and Tieyong Zeng*: Variational image restoration and segmentation with Rician noise, Journal of Scientific Computing to appear. doi: 10.1007/s10915-018-0826-3
- [S5] Xu Guo, Yutian Li*, and Hong Wang: A high order finite difference method for tempered fractional diffusion equations with applications to the CGMY model, SIAM Journal on Scientific Computing 40 (2018), A3322-A3343. doi: 10.1137/18M1172739
- [S4] Xu Guo, Yutian Li*, and Hong Wang, A fourth-order scheme for space fractional diffusion equations, Journal of Computational Physics 373 (2018), 410-424. doi: 10.1016/j.jcp.2018.03.032 Description and Supplementary
- [S3] Xu Guo, Yutian Li*, and Hong Wang, A fast finite difference method for tempered fractional diffusion equations, Communications in Computational Physics 24 (2018), 531-556. doi: 10.4208/cicp.OA-2018-0001
- [S2] J. Zhu* and Y. Li: A new approach of eigenmodes for varying refractive-index profile's waveguides, IEEE Transactions on Microwave Theory and Techniques 64 (2016), 3131-3138. doi: 10.1109/TMTT.2016.2600325
- [S1] Y. Li and J. Zhu*: Efficient approximations of dispersion relations in optical waveguides with varying refractive-index profiles, Optics Express 23 (2015), 11952-11964. doi: 10.1364/OE.23.011952
Quantitative Finance
- [F4] Xu Guo, Yutian Li*, and Hong Wang: Multi-asset options under CGMY processes, Computer and Mathematics Methods with Applications 76 (2018), 1500-1514. doi: 10.1016/j.camwa.2018.07.002
- [F3] Haiming Song, Kai Zhang*, and Yutian Li: Finite element and discontinuous Galerkin methods with perfectly matched layers for American options, Numerical Methods: Theory Methods and Applications 10 (2017), 829-851. doi: 10.4208/nmtma.2017.0020
- [F2] X. Guo and Y. Li*: Valuation of American options under the CGMY model, Quantitative Finance 16 (2016), 1529-1540. doi: 10.1080/14697688.2016.1158854
- [F1] Jiguang Han, Ming Gao, Qiang Zhang*, and Yutian Li: Option prices under stochastic volatility, Applied Mathematics Letters 26 (2013), 1-4. doi: 10.1016/j.aml.2012.07.014
Research Grants
No. | Title | Sourse | Duration | Amount | Role |
---|---|---|---|---|---|
GRF 201513 | Heat Kernals for High Step Subelliptic Operators | Hong Kong RGC | Jan. 2014 – Dec. 2016 | HK$ 592,987 | PI |
GRF 12303515 | Heat Kernel Asymptotics for Hörmander Type Operators | Hong Kong RGC | Sep. 2015 – Aug. 2018 * | HK$ 451,255 | PI |
GRF 12328416 | The index theorem for subelliptic operators on contact manifolds – A heat kernel approach | Hong Kong RGC | Sep. 2016 – Aug. 2019 * | HK$ 488,501 | PI |
Start-up | Start-up grant | Hong Kong Baptist University | Jan. 2013 – Dec. 2015 | HK$ 120,000 | PI |
FRG2/14-15/015 | Optimal Trajectories in Nonholonomic Systems | Hong Kong Baptist University | Jun. 2015 – May 2016 | HK$ 133,200 | PI |
PF01 000861 | Numerical Methods for Fractional Diffusion Equations | The Chinese University of Hong Kong, Shenzhen | Mar. 2018 – Feb. 2021 | RMB 1,650,000 | PI |
11801480 | On a Class of Subelliptic Operators | National Natural Science Foundation of China | Jan. 2019 – Dec. 2021 | RMB 250,000 | PI |
A * indicates the grant is terminated since I left Hong Kong.